Commensal Propionibacterium strain UF1 mitigates intestinal inflammation via Th17 cell regulation.

نویسندگان

  • Natacha Colliou
  • Yong Ge
  • Bikash Sahay
  • Minghao Gong
  • Mojgan Zadeh
  • Jennifer L Owen
  • Josef Neu
  • William G Farmerie
  • Francis Alonzo
  • Ken Liu
  • Dean P Jones
  • Shuzhao Li
  • Mansour Mohamadzadeh
چکیده

Consumption of human breast milk (HBM) attenuates the incidence of necrotizing enterocolitis (NEC), which remains a leading and intractable cause of mortality in preterm infants. Here, we report that this diminution correlates with alterations in the gut microbiota, particularly enrichment of Propionibacterium species. Transfaunation of microbiota from HBM-fed preterm infants or a newly identified and cultured Propionibacterium strain, P. UF1, to germfree mice conferred protection against pathogen infection and correlated with profound increases in intestinal Th17 cells. The induction of Th17 cells was dependent on bacterial dihydrolipoamide acetyltransferase (DlaT), a major protein expressed on the P. UF1 surface layer (S-layer). Binding of P. UF1 to its cognate receptor, SIGNR1, on dendritic cells resulted in the regulation of intestinal phagocytes. Importantly, transfer of P. UF1 profoundly mitigated induced NEC-like injury in neonatal mice. Together, these results mechanistically elucidate the protective effects of HBM and P. UF1-induced immunoregulation, which safeguard against proinflammatory diseases, including NEC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commensal microbes drive intestinal inflammation by IL-17-producing CD4+ T cells through ICOSL and OX40L costimulation in the absence of B7-1 and B7-2.

The costimulatory B7-1 (CD80)/B7-2 (CD86) molecules, along with T-cell receptor stimulation, together facilitate T-cell activation. This explains why in vivo B7 costimulation neutralization efficiently silences a variety of human autoimmune disorders. Paradoxically, however, B7 blockade also potently moderates accumulation of immune-suppressive regulatory T cells (Tregs) essential for protectio...

متن کامل

Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria

The gastrointestinal tract of mammals is inhabited by hundreds of distinct species of commensal microorganisms that exist in a mutualistic relationship with the host. How commensal microbiota influence the host immune system is poorly understood. We show here that colonization of the small intestine of mice with a single commensal microbe, segmented filamentous bacterium (SFB), is sufficient to...

متن کامل

The Treg/Th17 Axis: A Dynamic Balance Regulated by the Gut Microbiome

T-helper 17 (Th17) and T-regulatory (Treg) cells are frequently found at barrier surfaces, particularly within the intestinal mucosa, where they function to protect the host from pathogenic microorganisms and to restrain excessive effector T-cell responses, respectively. Despite their differing functional properties, Th17 cells and Tregs share similar developmental requirements. In fact, the fa...

متن کامل

Commensal-dependent expression of IL-25 regulates the IL-23–IL-17 axis in the intestine

Alterations in the composition of intestinal commensal bacteria are associated with enhanced susceptibility to multiple inflammatory diseases, including those conditions associated with interleukin (IL)-17-producing CD4(+) T helper (Th17) cells. However, the relationship between commensal bacteria and the expression of proinflammatory cytokines remains unclear. Using germ-free mice, we show tha...

متن کامل

Regulation of RORγt in Inflammatory Lymphoid Cell Differentiation.

T-helper 17 (Th17) cells differentiate from naïve CD4(+) T cells in response to signals from commensal microbiota and produce cytokines critical for the integrity of mucosal barriers. These cells also disseminate throughout the body, and are key participants in numerous inflammatory processes. A key challenge is to elucidate the mechanisms that govern Th17 cell beneficial versus pathogenic func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 127 11  شماره 

صفحات  -

تاریخ انتشار 2017